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The evolution of three-dimensional temporally evolving plane mixing layers through 
as many as three pairings has been simulated numerically. All simulations were 
begun from a few low-wavenumber disturbances, usually derived from linear 
stability theory, in addition to the mean velocity. Three-dimensional perturbations 
were used with amplitudes ranging from infinitesimal to large enough to trigger a 
rapid transition to turbulence. Pairing is found to inhibit the growth of infinitesimal 
three-dimensional disturbances, and to trigger the transition to turbulence in highly 
three-dimensional flows. The mechanisms responsible for the growth of three- 
dimensionality and onset of transition to turbulence are described. The transition to 
turbulence is accompanied by the formation of thin sheets of spanwise vorticity, 
which undergo secondary rollups. The post-transitional simulated flow fields exhibit 
many properties characteristic of turbulent flows, 

1. Introduction 
Free shear layers are of great technological importance because they occur in many 

practical devices, especially those involving chemical reactions. However, a thorough 
understanding of the hydrodynamics of free shear flows is a prerequisite to 
understanding the physical processes involved in such chemically reacting systems. 
In  Rogers & Moser (1992) (hereafter referred to as RM) and in this paper we attempt 
to develop such an understanding in the case of the simplest free shear flow, the plane 
mixing layer. Despite the fact that this flow has been extensively studied by 
analytical, numerical and experimental means, many questions remain unanswered. 
In particular, not enough is known about the development of three-dimensionality 
and the transition to turbulence. Here numerically simulated temporally evolving 
free shear layers that undergo up to three pairings of the primary Kelvin-Helmholtz 
rollers are examined to study these issues. 

The spanwise vortices (rollers) that result from the Kelvin-Helmholtz instability 
of the plane mixing layer are unstable to subharmonic divturbances (Kelly 1967 ; 
Pierrehumbert & Widnall 1982). This results in the pairing of the rollers (i.e. 
corotation and amalgamation of neighbouring rollers). Such pairings have been 
observed in a variety of experimental and computational studies of the mixing layer 
(e.g. Winant & Rrowand 1974; Brown & Roshko 1974; Riley & Metcalfe 1980; Ho 
& Huerre 1984; Corcos & Sherman 1984; Metcalfe et al. 1987). Pairing can occur in 
two-dimensional mixing layers or in fully turbulent mixing layers. The results of 
Winant & Browand (1974) suggest that pairing is the primary mechanism for the 
growth of the layer thickness, though this may not be the case in strongly turbulent 
mixing layers (Hernan & Jimenez 1982). Moore & Saffman (1975) proposed a 
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different mechanism by which rollers can amalgamate (‘tearing’ or ‘shredding’) and 
this has been observed both computationally and experimentally (e.g. Riley & 
Metcalfe 1980; Yang & Karlsson 1991). However, tearing occurs only for a narrow 
range of relative phasings of the fundamental and subharmonic disturbances 
(Monkewitz 1988) and is therefore less likely in unforced mixing layers (Hernan & 
Jimenez 1982). Further, amalgamation of more than two rollers (‘triplings’, 
‘quadruplings’ etc.) can occur, although this is less likely in the absence of forcing 
(Brown & Roshko 1974; Hernan & Jimenez 1982). 

The rollers are also unstable to three-dimensional disturbances (Pierrehumbert & 
Widnall 1982; Corcos & Lin 1984), but this instability is apparently weakened by 
pairings (Metcalfe et al. 1987 ; Huang & Ho 1990). In addition to deforming the rollers 
(Pierrehumbert & Widnall 1982), the three-dimensional instability leads to arrays of 
oounter-rotating ‘rib ’ vortices, which reside in the braid region between the rollers 
and extend from the bottom of one roller to the top of the next (Corcos & Lin 1984; 
RM). If the rib vortices are sufficiently strong (i.e. have large enough circulation), 
then they collapse into compact nearly circular vortices, which are easily detected by 
flow visualization (Lin & Corcos 1984; RM). Such rib vortices have been observed in 
many experimental and computational studies of the mixing layer (e.g. Brown & 
Roshko 1974; Konrad 1976; Bernal 1981; Breidenthal 1981; Jimenez 1983; Bernal 
& Roshko 1986; Metcalfe et al. 1987; Buell & Mansour 1989). The spanwise 
wavelength at which the ribs form is highly variable (Lasheras & Choi 1988). 
However, many experiments (e.g. Huang & Ho 1990) and the analysis of 
Pierrehumbert & Widnall (1982) suggest that there is a preferred wavelength of 
roughly two-thirds of the spacing between the rollers. This spanwise lengthscale may 
change as the mixing layer pairs (Huang & Ho 1990), but such changes appear to be 
slow (Rernal & Roshko 1986; Rogers & Moser 1993). 

As the mixing layer becomes more three-dimensional, i t  eventually undergoes a 
transition to turbulence (Koochesfahani & Dimotakis 1986). This transition is 
awompanied by a marked increase in the degree of scalar mixing in the flow, 
particularly a t  high Schmidt number (Konrad 1976 ; Breidenthal 1981). Because the 
effect on mixing is so large, this transition has been called the ‘mixing transition‘. In 
experiments, this transition occurs at  Reynolds numbers (based on visual thickness 
and velocity difference) between 5600 and 17000 (Koochesfahani & Dirnotakis 1986). 
Huang & Ho (1990) found that the transition was apparently linked to  pairings, and 
that transition was completed by the second pairing. This is consistent with 
observations by Winant & Browand (1974). The actual mechanism of the transition 
has been a matter of some speculation, with Lin & Corcos (1984) proposing the 
collapse of the rib vortices as the initiating process and Lasheras, Cho & Maxworthy 
(1986) suggesting a higher-order instability. Moser & Rogers (1991) recently 
identified a pairing-initiated transition mechanism. 

There are several unanswered questions regarding the development of three- 
dimensionality and the transition to turbulence in pairing mixing layers, and this 
study was undertaken to address some of these questions. Tn particular, the 
character of the three-dimensional instability and its inhibition by pairing is 
investigated. Also studied are the nonlinear evolution of three-dimensional 
disturbances during pairings, including transition mechanisms. Finally, character- 
istics of the post-transitional turbulent flows are of interest. These issues are 
addressed using direct numerical simulation of mixing layers undergoing multiple 
pairings (up to three) at  large Reynolds numbers (up 10000 based on visual thickness 
and velocity difference). 
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Some of the discussion in the following section relies on results and definitions from 
the first portion of this study (RM), which deals with the rollup of three-dimensiorial 
mixing layers. A review of the necessary material appears in the Appendix. Also, a 
brief description of some aspects of the small-scale transition discussed here appeared 
in Moser & Rogers (1991). 

In  $2, background information on the numerical simulations used in this study is 
presented. Some important results from two-dimensional pairing simulations are 
given in $ 3. Linear stability of the pairing two-dimensional mixing layer is discussed 
in $4. and nonlinear evolutions of flows undergoing one and two pairings are 
presented in $$5 and 6, respectively. Finally, the characteristics of the post- 
transitional ‘turbulent’ flows are described in $7 and a summary is given in $8. 

2. Preliminaries 
The results presented in this study are obtained by examining direct numerical 

simulations of time-developing mixing layers. A time-developing formulation was 
used because it makes possible the simulation of the higher Reynolds numbers 
required for the study of transition to turbulence. The evolution of vorticity 
structure in spatially developing mixing layers is expected to  be similar (Buell, Moser 
& Rogers 1992). 

As in RM, the flows described here were initialized with simple ‘clean’ initial 
conditions (see 92.2) with relatively short spanwise wavelengths. This results in the 
‘standard ’ rib and roller structures observed in experimental mixing layers. The 
absence of broadband initial disturbances permits the study of transition to 
turbulence from an organized flow. 

2.1. The governing equations and numerical considerations 
The simulations reported here were performed by solving the vorticity equation 
derived from the incompressible Navier -Stokes equations : 

am 1 
- + V ~ ( m x U ) = - v ~ ~ ,  

Re, at 

where U(z, y, z ,  t )  is the velocity vector (with components u, u and w), and o 3 V x U 
is the vorticity vector. Here, U (the half-velocity difference) and &‘, (the initial 
vorticity thickness of the layer, see equation (4)) have been used to non- 
dimensionalize the equations and form the Reynolds number Re, = U q / v  (v is the 
kinematic viscosity). This non-dimensionalization is used throughout the paper. In 
addition, the evolution of a passive scalar T is computed using the scalar equation 

a I’ 1 --+ U * V T  = -V2T,  
at Pe, 

where the PBclet number is given by Pe, = Re,Sc and the Schmidt number is 
Sc = v/y ( y  being the molecular diffusivity of the scalar). 

The above equations are solved using periodic boundary conditions with periods 
L, and L, in the streamwise ( x )  and spanwise ( 2 )  spatial directions and an infinite 
domain in the cross-stream (y) direction. The pseudospectral numerical method used 
is described in detail in Spalart, Moser & Rogers (1991). As many as 192 x 212 x 128 
Fourier/Jacobi modes and 380 hours on a Cray Y-MP were required to simulate the 
turbulent flows described in $ 7  (e.g TIJRR~P) .  



278 R. D. Moser and M .  M.  Rogers 

2.2. Xpecijcation of initial conditions 

The initial mean velocity and passive scalar profiles used for all the simulations 
reported here are of the form 

- 

0 = Tierf (&y/60,), T = g( l  +erf (&y/60,)). (3) 

Note that the velocity profile has a vorticity thickness of c, where t h e  vorticity 
thickness is 

In  addition to the mean velocity, simple perturbations are included in the initial 
conditions. These perturbations include just one or a few of the x- and z-Fourier 
modes of the representation. Streamwise and spanwise fundamental wavelengths (A, 
and A,) are chosen to be the most unstable wavelengths from linear theory (A, = 
2.327c, see Monkewitz & Huerre 1982, and A, = 0.6AX, see Pierrehumbert & Widnall 
1982; Rogers & Moser 1993) and perturbations with these wavelengths and their 
subharmonics are used in the initial conditions. T o  accommodate these perturbations, 
the computational domain must be an integer multiple of the wavelengths in the x- 
and z-directions. Thus, in general, L, = NA, and L, =MA,. To accommodate the 
subharmonic disturbances for the cases reported here, N and M are as large as 8. 

To specify the initial conditions and facilitate discussion throughout this paper, i t  
is necessary to refer to specific wavenumbers ; they will be referred to in ordered pairs 

where Ic, and k, are the x and z wavenumbers respectively. Thus the fundamental 
modes discussed above have a and/or /3 equal to one. Note that because the 
quantities under consideration are real, the Fourier coefficients of the (a, p) and the 
( - a ,  --D) modes are complex conjugates (denoted by t). Thus only modes with 
a 2 0 need to be considered here. 

The amplitude of a given Fourier mode (of an initial perturbation or in the evolved 
field) can be measured by the integrated (in y) r.m.s. velocity of the mode. Thus we 
define 

Here d,(a, p) is the (a, p) Fourier coefficient of the velocity component ue. Note that 
A ,  is only defined for non-negative a and /3 since it includes the contributions of all 
the (+a, +p) modes. The amplitude associated with all modes with a particular 
spanwise wavenumber and the amplitude of all three-dimensional Fourier modes 
(p  =I= 0) are also of interest. They are denoted by A,, and respectively (the 
subscript s signifies a sum over streamwise wavenumbers a) ,  and are defined 

J = O  J=l  
(7) 

Note, that as a special case, A,, is the amplitude associated with all two-dimensional 
modes. Throughout this paper, A,, A,, and A,,  are quoted normalized by U(60,);. A 
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superscript 0 (e.g. A' ) will be used to denote the amplitude a t  t = 0 and a 
superscript * will indicate the amplitude normalized by its value at  t = 0 (e.g. 

All the simulations reported here were initialized with two-dimensional spanwise 
vorticity perturbations, which lead to the Kelvin--Helmholtz rollup and subsequent 
pairings of the mixing layer. The spanwise vorticity perturbation has the form 

Y 

A$ = A,p/A&p). 

where Re signifies the real part of a complex argument. I n  most cases the complex 
functions fJy) are the stability eigenfunctions for the vorticity, determined from the 
Orr-Sommerfeld equation for that wavenumber. Each eigenfunction is normalized 
such that its integrated energy is one, its real part is symmetric in y (and positive at 
y = 0) and its imaginary part is antisymmetric. In  some casesf&) was chosen to be 
a Gaussian (f&) = cue-"@, where c, is a normalization constant chosen such that the 
integrated energy in the (a, 0) mode is unity when A,, is one), which is referred to as 
an o-Gaussian initial condition. The phase $lo is irrelevant to the evolution of the 
flow: and is set to zero for convenience. The phases of the subharmonics (a = a, 
f etc.) relative to the fundamental (a = 1) determine whether large-scale amal- 
gamations occur by pairing or tearing (see Riley & Metcalfe 1980; Monkewitz 1988). 
In  all cases the optimum pairing phase = 0) was selected. The amplitudes A&, 
vary depending on OL. and the case being considered. They are reported for each case 
in the relevant sections. 

As in RM, three-dimensionality was introduced in the simulations by including 
initial perturbations in the (0, -kp) modes. These are referred to as streamwise 
invariant disturbances. For these modes, only the streamwise vorticity component 
is made non-zero and the following functional form is used: 

The function g&y) is either an w-Gaussian disturbance (ga(y) = cpe-nva) or is such 
that the vertical velocity w is a Gaussian (w-Gaussian disturbance, gp(y) = 
cp(4y2 - 2 - k,2) e-Yz/kz). I n  either case, cB is a normalization constant selected such 
that the integrated energy in the (0 ,p )  mode is unity when A is one. An 
eigenfunction is not used for this mode because there are no eigenfunctions satisfying 
the boundary conditions. The phase is irrelevant to the flow evolution and for 
convenience is set to zero. The subharmonic phases are important and the effect of 
varying them is discussed in Rogers & Moser (1993). In  Rogers & Moser (1991) i t  was 
shown that the flow evolution resulting from the streamwise-invariant disturbances 
used here is typical of the evolutions resulting from a variety of other three- 
dimensional disturbances. 

2.3. Flow symmetries 
In some cases, the initial conditions (8) and (9) described in $2.2 possess two spatial 
symmetries that are preserved by the Navier-Stokes equations. Whether or not these 
symmetries exist depends on the spanwise subharmonics and their phases One 
possible symmetry is a z-plane reflection symmetry, 

?P 

Or "'} (10) q ( x ,  y, z )  = -wi(x, y, -2+22x,), where i = x 

w,(z, y, 2) = w,(x, y, - 2 + 2z , ) ,  

where x = z, is a symmetry plane. If this symmetry exists, there are two such 
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4 0  At0 At0 At0 
Simuhtion x 10' x 102 x 10' x lo2 7, T ~ , ,  7pl T , ~  T , ~  T~~ 7.' T~~ T~~ T~~ 

-~ __ 13.4 17.5 - - - - - - __ 2DOP 4.00 - 
2D1P 4.00 3.00 - ~ 11.9 - 21.5 29.2 46.5 - ~ - - 

2D2P 4.00 3.00 3.00 -~ 11.9 - 21.5 31.2 - 46.7 63.9 90.3 ~ 

2D3P 4.00 3.00 3.00 3.00 11.9 - 21.5 32.0 - 47.0 66.7 - 103.7 139.8 
2D1PDEL 4 . 0  1.00 -- - 13.1 20.0 26.4 34.4 - - -  - - - ~~ - 
2D2PoG 4.52"" 3.47"G 5.14"G - 11.8 -~ 21.0 35.3 39.9 60.7 - ~~ - 

TABLE 1. Parameters of the two-dimensional simulations. Disturbance profiles are eigenfunctions 
except for 2L)2PwG, in which they are w-Gaussian (indicated by w G ) .  Re, = 250, = 0, Pr = 1.0 
and A, = 1.16(2~) for all cases. 2D3P was not run long enough to determine T , ~ ,  21)lPna~ was not 
run long enough to determine 7,1r and 2D2PoG was not run Iong enough to determine T , ~ .  

symmetry planes in the domain, located at z = 0 and z = & for the initial 
condition in (9). Note that both o, and wy are zero in these symmetry planes. The 
other possible symmetry is a point-reflection symmetry, 

w&,y,z) = o ~ ( - x + 2 x s ,  -y, - z+2zs) ,  (11) 

where (x, y, z )  = (xs, 0, z s )  is a symmetry point. If this symmetry is present, there are 
four such symmetry points in the domain, located at  (O,O,&) ,  (O,O,@.,+$h,), (iLZ, 
O,$A,), and (&,,O,&+$A.,) for the values of $ao and & used in (8) and (9). 

These symmetry planes and points provide well-defined reference locations in the 
flow. The Kelvin-Helmholtz roller that remains after all pairings are complete is 
centred at x = (for $ao = 0), the x-location of two of the symmetry points. The 
braid regions between the final roller and its periodic images are centred on the other 
symmetry points a t  x = 0 (and by periodicity at x = LZ). The rib vortices that form 
in the surviving braid region (see RM) are centred on the x = 0 symmetry points. 

The reference locations described above can be used to define three special planes 
that will be used to view the simulated flow fields (see figure 1 of NM). Two are 
(z,y)-planes: the between-ribs plane (BP) and the rib plane (RP). The between-ribs 
planes are coincident with the planes of symmetry at z = 0 and z = LAz, and are 
always located between a pair of ribs. The rib planes at  x = $A, and &z++h, pass 
through the ribs (halfway between the BPs when L, = A,) and contain the symmetry 
points. Note that the BP is not well defined if the plane symmetry (10) is broken and 
the R P  is not well defined if the point symmetry (1  1) is broken. The other plane used 
here is the (z,y)-plane through the middle of the surviving braid region (the MP). 
Thus for the disturbances used here, the M P  is located at  x = 0 (and x = L, by 
periodicity). If the point-reflection symmetry exists, the MP contains two of the 
symmetry points. 

The presence of these symmetries in the flows considered here simplifies the 
analysis of the simulations by allowing unambiguous definitions of the special planes 
discussed above as well as other items (e.g. rib circulation and rib vortex lines). Of 
course laboratory mixing layers do not possess these symmetries ; therefore, flows 
that break one or both of the symmetries have been simulated to confirm that the 
insights gained from these idealized symmetric cases are valid in general. Indeed, 
flows without these symmetries evolve qualitatively like the typical symmetric flows 
(see $ 7 ,  Rogers & Moser 1991, and Moser & Rogers 1992). 
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3. Two-dimensional pairings 
Tn this section a brief description of the behaviour of two-dimensional mixing 

layers is given. The flows described are the time-evolving base flows for the 
infinitesimal three-dimensional perturbations studied in $4. The discussion here 
emphasizes features of two-dimensional mixing layers that have a large impact on 
the evolution of three-dimensionality. It is therefore essential for understanding the 
rest of this paper, although a few of these features have been reported previously. In  
addition, the flows examined here undergo up to three pairings of the spanwise 
Kelvin-Helmholtz rollers, which permits the study of a longer flow evolution than 
previously possible. A list of the two-dimensional simulations for which data are 
presented is given in table 1.  

In  the now familiar pairing process, pairs of well-developed rollers come together, 
corotate and eventually amalgamate. Both the number of rollers and the number of 
braid regions are thus halved, with the contents of every other braid region being 
absorbed into the new paired roller. The surviving braid region continues to be 
depleted of spanwise vorticity as all the vortical fluid is drawn into the paired roller. 
As the cores of the original spanwise rollers merge into a new, roughly circular core, 
spiral arms of weaker spanwise vorticity are ejected away from the paired eddy. 
(This is required by energy conservation, see Martel, Mora & Jimenez 1989.) The tips 
of these spiral arms develop a characteristic hook shape and are eventually drawn 
back into the surviving braid regions between the paired eddy and its periodic 
images. This process repeats itself after each pairing as can be seen in figure 1, where 
the paired rollers during and after the first, second, and third pairings are shown. 

As in RM, the first maximum in time of the fundamental disturbance amplitude 
A,,  is taken to define the 'rollup time', 7,. Similarly, the first maximum of the 
subharmonic amplitude (Ato) is taken to be the 'first pairing time', T ~ ~ ,  which is 21.5 
for most cases considered here (see table 1). More generally, the nth pairing time T~~ 

is determined by the time of the first maximum of A s , .  Vorticity contours at rpl, rP2, 
and 7p3 are shown in figure 1 (a ,  c, e ) .  At each pairing time, the pairing rollers are in 
about the same relative position, indicating that the maximum in A,, is a consistent 
measure of the pairing time in these cases. It can be seen from figure 1 that  at  a 
pairing time the paired eddy is largely vertical with a short streamwise extent (the 
momentum thickness reaches a local maximum near the pairing time, see figure 2c). 
At this point, the original vortex cores have corotated by about 120". Note that Ho 
& Huang (1982) use a similar definition to define the pairing location in their 
spatially developing layer, except that only the u-component is used to determine 
the mode amplitude. By this definition the pairing time occurs sooner, consistent 
with Ho & Huang's observation that the vortex cores have rotated by only 90" at 
their pairing time. 

As a pairing proceeds, the streamwise lengthscale and the thickness (as measured 
by S,, see figure 2c) of the layer double. This has two important consequences. First, 
since the velocity scale remains the same, the timescale also doubles. For this reason 
the time between pairings approximately doubles with each pairing (see table 1). The 
second consequence is that the (surviving) mid-braid strain rate (S) ,  is approximately 
halved with each pairing. This is illustrated in figure 2 ( b )  where the mid-braid strain- 
rate evolutions for 2DOP, 2DlP, 2D2P, and 2D3P are plotted. Note that the late-time 
plateau level of S for 2D1P is about 2.5 times lower than for 2DOP (0.2 versus 0.5), 
but that each additional pairing does halve the plateau level (approximately 0.1 for 
2D2P and 0.05 for 2D3P). 

10 VLM 247 
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FIGURE 1. Contours of w, from flow 2T)iP at (a) t = 21.5 = 7pl and ( b )  t = 30.4 % 7,1, flow 2D2P at  
(c) t = 47.5 % 7p2 and ( d )  t = 63.8 % T , ~ ,  and flow 2D3P at (e) t = 104.8 = T~~ and ( f )  t = 140.1 z T,~. 
The contour increment is (a, b) -0.10, (c, d )  -0.08 and ( e , f )  -0.06. In  this and subsequent similar 
figures dotted contours indicate negative vorticity, solid contours positive vorticity and tic marks 
arc at  increments. 

In the single rollup cases discussed in RM, the roller cores eventually became 
elliptical and spanwise vorticity was advected into the braid region (oversaturation). 
This does not happen after the rollup in the pairing cases shown in figure 1 because 
the pairing begins before oversaturation occurs. After the pairing, however, the 
spiral arms discussed above bring spanwise vorticity back into the braid region. This 
re-entry is evident in the evolution of - ob, shown in figure 2 (a) ,  where this re-entry 
of spanwise vorticity is marked by sudden increases in -wb.  The time at  which the 
first such re-entry occurs is referred to as rS1 (the subscript 1 signifying re-entry after 
the first pairing) and is 29.2 for 2DlP. Note that before the first pairing, -wb 
becomes very small (0.02 compared to about 2 at t = 0) and there is virtually no 
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FIGURE 3. Contours of o, from (a )  2D1P a t  t = 47.2 x T , ~  and ( h )  a similar flow with Re, = 1000, 
also just after rol. The contour increment is -0.1, with an extra contour a t  -0.05 to show the 
elliptical shape of the rollers. 

vorticity left in the braid region. Similarly, 7,, denotes tthe time at  which vorticity 
from the spiral arms re-enters the surviving braid region after the nth pairing, where 
the minimum in -wb is used to  determine its precise value. Vorticity contours at  
times 7,1, 7g2, and 7s3 are shown in figure 1 (b ,  d , f ) .  Entry of the spiral arms into the 
braid region is apparently an inevitable consequence of pairing, as no pairing two- 
dimensional initial conditions have been found that lead t o  the suppression of this re- 
entry. 

The vorticity - wb also increases abruptly another time, well after the last spiral- 
arm re-entry for each case (figure 2a) .  This re-entry does not occur for cases that 
undergo further pairings. As can be seen in figure 3, this final re-entry occurs when 
the paired roller becomes elliptical and is eventually advected into the braid region. 

10-2 
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This ‘oversaturation’ is similar to that which occurs after the rollup in the absence 
of pairing. The oversaturation time is denoted by 7,, (see table l), where n is the 
number of pairings that have occurred prior to the oversaturation.? All of the flows 
will eventually reach oversaturation, although the 2D3P flow was not run long 
enough to determine 7,3. In addition to the major re-entry events associated with the 
spiral arms and oversaturation, there are some minor increases in - wb at t x 75 (7,2 

z 65) and at t E 151 (7s3 = 139.8). These are caused by the internal structure of the 
spiral arms. When Re, = 250, the spiral arms resulting from the first pairing have a 
simpler internal structure (figure 1) and thus do not result in such secondary 
increases in -wb. 

The oversaturation described above is caused by the advection of vorticity into the 
braid region, and is not a low-Reynolds-number effect associated with viscous 
diffusion, Vorticity contours just after oversaturation for a single-pairing case with 
Re, = 1000 are shown in figure 3 ( b ) .  The pattern is quite similar to that just after 
oversaturation in the 2DlP flow with Re, = 250, although the vorticity re-entering 
the braid region has more internal structure at  the higher Reynolds number (and 
consequently a more complicated - wb evolution after 7,1). 

As noted above, the T~~ are consistent measures of the pairing times, the rollers 
being in about the same relative position at  each 7,,, (figure 1). The structure of the 
flow is also similar at each T ~ ~ .  Despite this general similarity, there are differences 
among the structures at each pairing. With each additional pairing, the vorticity 
becomes more concentrated relative to the dominant lengthscale in the flow (i.e. the 
roller spacing). For a self-similar evolution, the vorticity from two rollers would have 
to combine and fill an area of four times the original roller area (with half the peak 
vorticity since the circulation is conserved). The only mechanism for spreading out 
the vorticity in this way is viscous diffusion, and since the Reynolds number doubles 
with each pairing, diffusion cannot keep pace with the pairings. The resulting paired 
rollers thus have high vorticity concentrated in a relatively small area (figure 1). 

The details of the spiral arm structures also change between pairings. They become 
proportionately weaker with each pairing, and extend further around the roller. This 
second feature is also related to the fact that the concentrated vorticity is in a 
proportionately smaller area. The timescale for rotation of the concentrated core 
does not increase as fast as the timescale for the evolution of the spiral arms. Thus 
the concentrated core turns over further by the time the spiral arms cross the mid- 
braid plane. 

Finally, with each additional pairing, there are more small-scale structures in the 
flow. This is expected, because the effective Reynolds number of the flow has 
increased. Also each pairing introduces more fine structure as the rollers move 
around each other (like kneading bread). 

The occurrence or suppression of an oversaturation before a pairing is dependent 
on the timing of that pairing. In particular, if a pairing is delayed, then 
oversaturation can occur before the pairing begins to dominate the evolution. This 
occurs in ZDIPDEL, in which the initialA4, is 0.01 rather than 0.03 as in the standard 
case. The mid-braid spanwise vorticity ( -wb), the mid-braid strain rate (X), and the 
momentum thickness (S,) are shown in figure 4 for 2DlP, ~ D ~ P D E L  and 2DOP 
(A;,, = 0). These quantities indicate that SD~PDEL follows the non-pairing behaviour 
(2DOP) longer than 2DlP. In particular, -wb indicates that there is a re-entry of 
spanwise vorticity into the braid region at  T,, = 20.0, before the pairing (7pl = 26.4). 

t The non-pairing oversaturation time, which was called 7, in RM, will be called 7a0 here to avoid 
confusion with the postpairing oversaturations. 
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PICURE 4. Time development of (a)  mid-braid spanwise vorticity, (a) mid-braid strain rate and 
( c )  momentum thickness for 2D1P, ~ D ~ P D E L ,  and 2DOP. 

This oversaturation is delayed somewhat compared to the non-pairing case (2DOP, 
7,0 = 17.5) and the amount of vorticity re-entering the braid region is less. After the 
pairing, the evolution of 2DiPDEL is similar to that of ZDlP, but delayed in time. 

As was done in RM, the flow structure and various flow statistics were examined 
for a range of Reynolds numbers, 100 <Re, < 1000. The observed variations with 
Re, are similar to those presented in RM (see Moser & Rogers 1992 for details) and 
indicate that while significant low-Reynolds-number effects occur at Re,, = 100, 
Re, = 250islargeenough toeliminatetheworst sucheffects. AninitialReynoldsnumber 
of 250 was therefore used for the Simulations in the remainder of this paper. This 
marginally adequate Reynolds number was accepted because the pairing simulations 
are significantly more computationally intensive than the non-pairing simulations in 
RM, where the initial Reynolds number was chosen to be 500. One Reynolds number 
effect that was not discussed in RM is the presence, at  Re,, = 500 and Re, = 1000, of 
second sudden increases in -wb after 7,1. These are due to the internal structure of 
the spiral arms as observed after the second and third pairings in the Re, = 250 flows. 

4. Evolution of infinitesimal three-dimensional perturbations 
It was seen in RM that linear analysis of the type performed by Corcos & Lin 

(1984) provides a good description of the three-dimensional rollup of a mixing layer. 
Several similar linear computations in which the base flow undergoes one or more 
pairings are described in this section. As in Corcos & Lin (1984), we compute the 
evolution of three-dimensional infinitesimal perturbations evolving in a two- 
dimensional mixing layer as it rolls up and pairs. Since the base flow is time-evolving, 
initial perturbations must be specified (there is no eigenvalue problem). Streamwise- 
invariant vorticity perturbations with various spanwise wavenumbers are used as 
discussed in g2.2. 
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FIQURE 5. Time development of I',* (-) and A&, (A,$ = A:l) (- - - - -) of three-dimensional linear 
perturbations with /3 = 1 evolving in the presence of a two-dimensional bme flow that undergoes 
0, 1 ,  2, or 3 pairings (ZDOP, 2D1P, ZDZP, and 2D3P respectively). 

4.1. Growth of three-dimensional perturbations 
The two measures of the strength of the three-dimensional perturbations used here 
are the amplitude (A,$ = A3D/A!D) and the streamwise circulation in the surviving 
MP (c = T x / c ) .  The evolution of both these quantities for three-dimensional 
perturbations with /3 = 1 (where A, = 0.6Ax) is shown in figure 5 .  Four cases, which 
undergo 0, 1,  2, or 3 pairings, are shown (the two-dimensional base flows are 2DOP, 
2D1P, 2D2P, and 2D3P and are described in 93). Despite the differences in the 
details of their growth, the magnitudes of AZD and r,* remain similar through three 
pairings and three orders of magnitude of growth. In  particular, the agreement 
between A,*D and r,* after oversaturation is excellent. (Note the flow undergoing 
three pairings does not reach oversaturation during the time shown.) Also, neither 
A,*, nor r,* grow smoothly in time. Both quantities exhibit plateaux at  each pairing 
time, with the plateaux for the circulations (solid curves) being particularly long. As 
explained in RM, sudden jumps in the MP circulation are caused by the re-entry of 
spanwise vorticity into the braid region (RM $3.1). In  figure 5, there are circulation 
jumps for each such re-entry, that is, at  each r,, and at the oversaturation time for 
each case. The slight variation in the timing of the circulation jumps is due to the 
variation in the re-entry times caused by subsequent pairings. More significant 
differences in the r,* evolution are apparent after oversaturation for each case. Flows 
undergoing further pairings do not exhibit a growth in rZ at this point (they are not 
oversaturated). As with r,*, there is very little difference in AZD (dashed curves) 
among the cases until oversaturation, well after the last pairing of each case. Thus, 
by these measures, a flow becomes significantly affected by the lack of further 
pairings at  oversaturation. 

The circulation jumps that occur prior to later pairings reach the next plateau 
level quickly. Those that occur after the last pairing of each case are more irregular 
and protracted. This is because further pairings draw the vorticity in the spiral arms 
back out of the braid region and therefore shorten the period over which the 
circulation can increase. It is also apparent in figure 5 that the irregularity in the 
circulation jump after the final pairing of each simulation increases with the pairing 
number. This is due to the greater complexity of the perturbation and base flow as 
the number of pairings increases. 
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FIGURE 6. Time development of r: (-) and A&, (A,*, = A:) (----) of three-dimensional linear 
perturbations with /3 = 1 evolving in the presence of a two-dimensional base flow which undergoes 
no pairings, a delayed pairing, or a normal pairing (ZDOP, ~ D ~ P D E L ,  and 2DlP respectively). 

A t  each level, further pairings result in less three-dimensional energy growth and 
less circulation growth than that associated with oversaturation, i.e. the A&, and r: 
curves for cases with more pairings lie below those with fewer pairings. Thus pairings 
inhibit the growth of three-dimensionality, although pairings do not actually reduce 
three-dimensionality. This has been observed both in experiments (Huang & Ho 
1990) and in other numerical simulations (Metcalfe et al. 1987, compare E,  in their 
figure 17 to the single-pairing AZD curve in figure 5). Pairing produces this inhibition 
of three-dimensionality by suppressing the oversaturation of the two-dimensional 
roller, thus preventing the re-entry of spanwise vorticity into the surviving braid 
region. Since spanwise vorticity is then essentially absent from the braid region, the 
rib circulation cannot grow. This limits the possible growth of three-dimensionality 
as discussed below. This growth limitation is only temporary since spanwise vorticity 
(associated with the spiral arms) does ultimately re-enter the braid region (see $3) .  

If pairing is significantly delayed, oversaturation can occur prior to the pairing 
(33), resulting in more growth of three-dimensionality. This is illustrated in figure 6 
where A,*, and rZ are shown for the non-pairing and single-pairing cases (2DOP and 
2DlP) as well as the delayed-pairing case ( ~ D ~ P D E L ) .  Because the pairing is not 
progressing fast enough to prevent spanwise vorticity from entering the braid region, 
the circulation increases around 700 = 20.0 in the delayed-pairing case (by a factor of 
3) and there is a corresponding increase in A&,. In the delayed-pairing case, the spiral 
arms form later and the corresponding jump in circulation is consequently also 
delayed. Interestingly, the factor by which the circulation increases at 7,1 is about 
the same in the delayed-pairing and normal-pairing cases. After 7,1 (the second 
oversaturation to occur in the delayed-pairing case) the growth of both AZD and rz 
for the pairing cases is qualitatively similar, although the level of these quantities in 
the delayed-pairing case is higher. The increased three-dimensionality resulting from 
the first oversaturation ( T , ~ )  in the delayed-pairing case is thus permanently 
embedded in the flow; it is not just a temporary increase until the pairing is 
completed. 

Note that the circulation increase associated with the re-entry of vorticity into the 
braid region that occurs during the first oversaturation in the delayed pairing case 
begins somewhat before T , , ~  = 20.0. This is because the minimum in -q, is not a 
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FIGURE 7 .  Normalized perturbation energy density ezD as a function of x at the four times 
indicated in the legend for a /3= 1 perturbation evolving on a base flow undergoing two 
pairings (2D2P) 
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precise measure of when new perturbation spanwise vorticity (required for circulation 
growth) crosses the mid-braid plane (MP). Spanwise vorticity that is weaker than 
that still present in the MP re-enters before T,,,. This effect is accentuated in this case 
because the competition between pairing and oversaturation causes the spanwise 
vorticity to approach and cross the M P  very slowly. This is also the reason the 
circulation grows gradually instead of jumping as in the other re-entries. 

The evolution of A &  can be further studied by examining the three-dimensional 
disturbance energy density given by 

where ( ), is the spanwise average. The amplitude A:D is related to the normalized 
energy density (e&, = e,,/e;,)t by 

In figure 7, e:, is shown as a function of x for the two-pairing case 2D2P at  several 
times between the first and second pairings. At rpl, the energy is concentrated in the 
cores of the rollers. (At T ~ ~ , .  the paired rollers are centred at x = 7.8 and 21.4. A t  7pz 
the single remaining roller is centred at  x = 14.6.) As the spiral arms enter the braid 
regions (see §3) ,  energy is transferred out of the core and into the braid regions, 
causing the energy in the braid regions to grow. By 7s1, the maximum braid region 
energy density is a factor of two greater than that in the cores. Also, note that at this 
time the MP of the braid region to be engulfed in the next pairing (x = 14.6) has 
experienced a large growth while the surviving MP (x = 0 and x = 4h, = 29.2) has 
not. This is because a t  rsl the spiral arms have just crossed the surviving MP and 
energy growth is just starting. The fact that the spiral arms enter parts of the braid 
region and initiate circulation and energy growth before they ultimately reach the 
surviving MP is the reason that A&, leaves its plateau and begins growing well before 
T , ~ .  Later ( t  = 40.4), the energy continues to grow a t  all x such that it becomes 
roughly uniformly distributed. Finally, a t  the second pairing, the energy has again 

t Note that because the initial three-dimensional disturbance is streamwise invariant, e!' is 
independent of x. 
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grown larger in the core than in the braid region. Note that the energy is more highly 
concentrated in the cores at  the first pairing than at the second. This is because of 
the greater complexity of the perturbations at the second pairing (see $4.2). Between 
t = 40.4 and t = rp2, the energy density is growing only in the roller core, since the 
spanwise vorticity has again been removed from the braid region. Finally, by rPz, A&, 
stops growing for a while (during the plateau regions in figure 5 ) .  At this point e:D 
in the surviving MP is constant and the only changes occurring in the e:D profile 
consist of mild redistributions of energy in the roller core. Apparently the roller 
disturbances come into some sort of temporary ‘equilibrium’ with the braid 
disturbances, which can no longer grow. The above process is repeated as another 
spiral-arm re-entry and pairing occur. 

Another consequence of the growth scenario discussed above is that the long-term 
growth of the three-dimensional perturbations in the presence of pairings is algebraic 
rather than exponential. One way to see this is to consider the circulation evolution. 
The above discussion suggests that the magnitude of the circulation jump that occurs 
at  each spiral-arm re-entry should be proportional to the circulation just before the 
jump because the circulation jump is governed by the spanwise vorticity disturbance 
brought into the mid-braid plane. The strength of this vorticity disturbance should 
be proportional to the circulation level since the roller and ribs have ‘equilibrated’. 
There may also be a weak dependence on the pairing number or other details of the 
two-dimensional flow. This is supported by the results in figure 5 where the 
circulation appears to jump by a constant factor at  each rsn. Thus rz - rp, where 
N, is the pairing number and I‘’ M 6 is the factor by which the circulation jumps at 
each 7sn. On the other hand, the time between jumps should scale approximately as 
2 N ~ ,  since the length- and timescales roughly double at  each pairing (93). Therefore 
r$ N AZD - tlogzr,. A similar conclusion is reached if one assumes that, since the 
length- and timescales are growing like t ,  the average growth rate (g) of the 
perturbations varies like (r - l / t .  On the other hand, the length- and timescales 
would no longer grow linearly if pairing were suppressed. In this case, spanwise 
vorticity from the oversaturated roller continually occupies the braid region, 
resulting in continuous circulation growth. The growth is then apparently 
exponential, in agreement with the results of Pierrehumbert & Widnall(1982), whose 
model problem (the Stuart 1967 vortices) is similar to an array of oversaturated 
rollers. Since the long-term growth of the three-dimensional perturbations in the 
presence of pairings is algebraic, the degree of three-dimensionality one ultimately 
obtains in any finite time depends greatly on the magnitude of the initial (or inlet) 
disturbances. 

4.2. Structure of the linear perturbations 

The structure of the three-dimensional perturbations is of interest since, as noted in 
RM, similar features are present in fully nonlinear simulations well past the onset of 
three-dimensional nonlinearity. The streamwise vorticity of the ,8 = 1 perturbations 
at the first three pairing times and the associated spiral-arm re-entry times is shown 
in figure 8. At each time, the streamwise vorticity associated with the ribs is clearly 
visible. However, as spanwise vorticity in the spiral arms is brought into the braid 
region, streamwise vorticity perturbations are present far from the centre of the layer 
in the braid region (figure 9 b ) .  They are then brought together by the two- 
dimensional strain in the braid region, as shown in figure 9. In the MP, the pattern 
of streamwise vorticity resembles five pairs of ribs stacked on top of each other. 
These distinct regions of streamwise vorticity are eventually pressed together by 
the strain, allowing viscosity to merge them so that only one region is apparent by 
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FIGURE 8. Contours of o, for perturbations with p = 1 in the RP. Perturbations are evolving on 
a base flow undergoing (u, b )  one, (c, d )  two and ( e , f )  three pairings (2DlP, 2D2P, and 2D3P 
respectively). Times are (a) 21.5 = 7pl, (a) 30.4 % T ~ ~ ,  (c) 47.5 x 7p2, (d )  63.8 % T , ~ ,  (e) 104.8 % 7p3, 

and (f) 140.1 ~ 7 ~ ~ .  The contour increments are (a,6) 1.5r!/(s0,)2, ( c , d )  5r~/(s0,)2, and (e,f)  
16cl(so,)z. 

the next pairing (figure 8c). This amalgamation of streamwise vorticity occurs 
by a different mechanism for finite-amplitude disturbances (see RM and $ 5 ) .  
Similar layered vorticity patterns form in the braid regions after further pairings 
(figure 8 d , f ) .  

Also apparent in these figures is the streamwise vorticity in the roller cores. At the 
first pairing ( T ~ ~ ) ,  the streamwise vorticity associated with each of the original 
unpaired rollers is visible as a large region of negative vorticity. For each pairing, the 
relative magnitude of the streamwise vorticity disturbances remaining in the 
prepairing cores is smaller until, a t  7p3 (figure 8 e ) ,  there is virtually no streamwise 
vorticity disturbance left in the cores. The other vorticity components are also small 
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FIGURE 10. Contours of perturbation spanwise vorticity (w:”) in the RP of p = 1 perturbations 
evolving on a (a) two-pairing (2D2P) and (b) three-pairing (2D3P) base flow. Times are (a)  
47.5 x T~~ and ( b )  104.8 z T ~ ~ .  The contour increment is 12r0,/(S0,)2. 

in the prepairing cores at  rP3. At the same time, the streamwise vorticity disturbances 
away from the core become more complicated, with finer structure relative to the size 
of the roller. This is expected since the effective Reynolds number is doubling with 
each pairing. Also, with each additional pairing, the disturbance is ‘folded over’ (like 
kneading bread) resulting in more striated disturbances. This is especially apparent 
in the perturbation spanwise vorticity disturbances (w:” = w, - ( w J Z )  shown at the 
second and third pairings in figure 10. It is important to recall that these very 
complicated perturbation flows are a result of a linear evolution. The source of the 
complexity is the evolving base flow, not three-dimensional nonlinearity. Even with 
these differences between the disturbances at  different pairings (disturbance levels 
in the cores, and fineness of striations), several of the qualitative features of 
the vorticity fields are the same during the second and third pairings (see figures 8 
and 10). 
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Simulation 

HICHOP 
LOWlP 
HIGH 1 P 
LOW2P 
MID2P 
HIGH2P 
WMID2P 
WHIGH2P 
TURB2P 

A10 A$l At0 AOIt 
x lo2 x 102 x lo2 x lo2 x lo2 

8.32 - 4.00 - 
4.00 3.00 - 1.66 - 
4.00 3.00 - 8.32 - 
4.52°G 3.470G 5.140G 1.59 - 
4.52wG 3.47wG 5.14WG 3.18 - 
4.52"' 3.47wG 5.14WG 9.64vG - 

- 

4.52wG 3.47wG 5.14"G 3.18 1.02 
4.52wG 3.47wG 5.14WG 9.64vG 2.71"' 
4.00 3.00 3.00 8.32 6.66 

_ _  
_ _  
1.54 0 
1.54 0 

10.11 in 

0 
0 
?a 

7, Tpl T81 T P 2  TS2 

12.4 15.9 - - - - 
11.9 ~ 21.6 28.8 - - 
11.5 - 23.4 27.4 - - 
11.8 - 21.1 32 40.0 53 
11.8 - 21.1 32 40.3 54 
11.2 - 20.1 31.2 38.3 T 
11.8 - 21.1 31 40.1 54 
11.2 - 20.4 31 38.5 T 
11.3 - 21.0 29.2 47.1 T 

t For comparison with cases cited in RM, TJA,, = 4.382, 5.472 and 7.210 for w-Gaussian 
disturbances with p = 1, 5 and a respectively. For v-Gaussian disturbances T,/Ao, = 4($n)fk,/ 
(k: + l);, where k,  = 2x/3/AZ. 

TABLE 2. Parameters of the three-dimensional simulations. Two-dimensional disturbance profiles 
are eigenfunctions unless superscripted wG, in which case they are w-Gaussian. Three-dimensional 
disturbance profiles are w-Gaussian unless superscripted ", in which case they are v-Gaussian. 
Reo = 250, $be, = 0, A, = 1.16 ( 2 4 ,  A, = 0.6A, and Pr = 1.0 for all cases. A 'T' indicates that the 
flow is too 'turbulent ' for 7,2 to be well-defined. Numbers given with less precision (T~, , )  are the 
result of -wb not being computed at every time step for some simulations. All the flows were 
either too 'turbulent' or not computed long enough to determine rO1 and 7,2. The HICHOP 
simulation was referred to as LOWDEL in Rogers & Moser (1991). 

5. Three-dimensional pairings 
In this section the nonlinear evolution of a mixing layer undergoing one pairing is 

examined. Results from two simulations with different initial three-dimensional 
disturbance strengths are studied and compared with the linear analysis discussed in 
$94.1 and 4.2. Table 2 lists some characteristics of the initial conditions for these two 
simulations (LowlP and HIGH~P) along with values of several of the reference times 
defined and used in this paper; other simulations referred to later in the paper are 
included in the table as well. In both simulations, the initial three-dimensional 
perturbation is in the fundamental (0, 1) Fourier mode (see (9)). 

5.1. Weakly three-dimensional pairing 
In RM it was found that the evolution of infinitesimal three-dimensional 
perturbations provided a good approximation of finite-amplitude perturbations even 
after the onset of three-dimensional nonlinearity. This is also true for flows 
undergoing pairings. In figure 11,  the evolution of the normalized three-dimensional 
amplitude and the normalized circulation r,* for both the LowlP and HIGH~P 
flows are compared to the results of the linear analysis of $4, These three simulations 
were begun from initial conditions that are identical except for the strength of the 
three-dimensional perturbation, with Low 1P having a three-dimensional pertur- 
bation a factor of 5 weaker than HIGH~P (see table 2) .  As can be seen in figure 11, both 
the amplitude and circulation of LowlP evolve nearly as predicted by linear analysis, 
with some slight differences occurring during and after the pairing. In  contrast, the 
stronger perturbation in HIGHIP results in some departure from the linear evolution 
as soon as t = 5. 

Despite the good agreement between linear analysis and the LowlP simulation, 
there are some nonlinear effects at, and beyond, the first pairing. For example, by 7,1 

the ribs in LowlP begin a marginal collapse in agreement with the Lin & Corcos 
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FIGURE 11. Time development of (a) A:,, ( b )  c, and ( c )  the Lin & Corcos (1984) collapse 
parameter 9 for various levels of initial three-dimensionality. Note 9 = 0 for linear analysis. 

collapse criterion (see figure l l c  and RM, 9’ defined in (A 3)). Otherwise, the 
streamwise vorticity in LowlP (see Moser & Rogers 1992) is virtually identical to the 
corresponding linear perturbation shown in figure 8. Note that the same level of 
three-dimensionality in non-pairing flows resulted in no discernible differences until 
after 700 (see RM). 

In  contrast, at  T~~ there are significant differences in the perturbation spanwise 
vorticity (u;”) in the BP of LowlP, due to nonlinear evolution of the ‘cups’ 
(discussed in RM), which are visible in figure 12(b) as the two intense regions of 
negative perturbation. Also note that the linear perturbations have the following 
symmetry : 

(14) 
u i (x , y , z )  = wi(-x+2xs, -y,z), i = x or y, 1 w;D(x,y,z) = -w;D(-xx+x,, -y,z), 

where x, = 0 or +A,, This symmetry is preserved by the linearized equations but not 
by the Navier-Stokes equations. Thus the symmetry is not apparent in figure la@). 
As the flow evolves further, the structural differences between LowlP and the 
corresponding linearly evolving flow increase. The magnitude of the linear spanwise 
vorticity perturbation continues to grow while that of LowlP does not (see figure 12). 
By t = 40, there is little similarity between w:, of LowlP and the linear analysis. 
Especially apparent is the absence of perturbations in the braid regions of LowlP 
(figure 124 .  The differences in the magnitude of can be quantified by examining 
the spanwise vorticity amplitude, W,,, (defined analogously to the amplitude A,,, 
with the spanwise vorticity replacing the velocity in (6) and (7)), normalized by r:/c2.S. The normalized W,,, is 48% lower in LowlP at T , ~  (5.80 and 8.57 for the 
LowlP and linear cases respectively), and is more than a factor of two smaller in 
LowlP at t = 4 0  (6.36 versus 14.65). Despite this large difference in WZ3,, the 
discrepancies in the magnitudes of the other vorticity components and the velocity 



294 R. D. Moser and M .  M .  Rogers 

+ - I  I I I I I 17 I I I I I I -1 I I I I I I ' - T ' I  I I I I 77 

X x 
FIGURE 12. Contours of perturbation spanwise vorticity (w,3O) in the R P  at (a, 6 )  t = 22.6 = T~~ and 
(c ,d)  t = 40.0 for ( b ,  d )  LowlP and (a, c) the Corresponding linear analysis (base flow 2DlP). 
Contour level is 3rO,/(%)'. In  this and subwyuent similar figures, dotted contours indicate negative 
vorticity, solid contours positive vorticity, and tick marks are a t  SU, increments. 

components are less than 8 %  a t  t = 40. It is remarkable that such large three- 
dimensional nonlinearities occur in the perturbation spanwise vorticity, with little or 
no effect on other quantities. 

5.2. Highly three-dimensional pairing 

The HICHIP flow described in this section results from an initial streamwise-invariant 
disturbance of the same amplitude as that used in the ROLLUP case described in RM 
(a factor of 5 larger than in LOWIP). As expected, the early evolution of HICHIP is 
very similar to that of its non-pairing counterpart. In  particular, the prepairing 
evolution of HICH~P is characterized by the same ' cups ' and collapsed 'ribs ' that 
were described in detail in RM (see Moser & Rogers 1992). A quantitative comparison 
between the evolution of mid-braid spanwise vorticity, mid-braid strain rate, 
momentum thickness, and Lin & Corcos (1984) collapse parameter in HIGH~P, 
HIGHOP (corresponding non-pairing flow), and the corresponding two-dimensional 
flow (2DlP) is given in figure 13. The differences between HIGH~P and HICHOP 
become significant by 700 = 15.9 of HIGHOP as expected, since oversaturation does 
not occur in HICHIP a t  this time. 

As with the non-pairing flows discussed in RM, HICHIP is highly three-dimensional 
and undergoes significant three-dimensional nonlinear evolution (see figure 1 1). In  
fact, the three-dimensional amplitude (A3,,) exceeds the two-dimensional amplitude 
(Aso) for most of the evolution (figure 14). The three-dimensionality also affects the 
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FIGURE 13. Time development of (a)  mid-braid vorticity, ( b )  mid-braid strain rate, (c)  momentum 
thickness, and (d) the Lin & Corcos (1984) collapse parameter. In  (d) ,  the curve labelled 2D1P was 
obtained by scaling T: of the infinitesimal perturbation to  be the same as the value in HIQH~P. 
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FIQURE 14. Time development of disturbance amplitudes for HIUH~P and the corresponding 

two-dimensional case (2DlP). 

two-dimensional modes as evidenced by the differences in A,, and the pairing times 
T~~ between H ~ G H ~ P  and 2D1P (see tables 1 and 2 and figure 14). Despite the strong 
three-dimensionality of this flow, the circulation of the rib vortices (r,) is well 
predicted by the linear computations until T , ~  (see figure l l b ) ,  as are the plateau 
levels of mid-braid vorticity and strain rate (-o,, and 8, see figure 13). Thus, the 
plateau level of the Lin & Corcos (1984) collapse parameter can be well predicted in 
this flow by scaling the linear results (figure 13d). 

As was discussed in Moser & Rogers (1991), pairing in this flow ultimately results 
in a transition to turbulence. This process is depicted in more detail for HIGH~P in 
figures 15 and 16, where the spanwise vorticity in the between-ribs plane (BP) and 
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FIGURE 15. Contours of w, in the z = 0 BP of HICHIP at (a) t = 14.6, (b)  t = 19.3, (c) t = 23.5 x T ~ ~ ,  
(d) t = 27.3 z 7,1, ( e )  t = 29.8 and (j’) t = 35.0. The contour increments are (u, b , f )  f0 .6  and (c, d, e )  
0.8 ( 1 . 6 5 r y ( a y  and 2.20r:/(~Y3~ respectively). Regions of positive spanwise vorticity are 
shaded. y = 0 is at the long tick-mark, not the centre of the domain. The secondary rollup marked 
with a box in ( e )  and the plane given by the vertical line in (d )  are discussed in $5.2.2. 

rib plane (RP) is shown. There are several key features of this development that were 
noted in Moser & Rogers (1991). The cups of intense spanwise vorticity discussed in 
RM are visible in figure 15(a). They begin to interact (figure 15b) and are torn apart 
(figure 15c). The spanwise vorticity in the BP then reorganizes into thin sheets 
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FIGURE 16. Contours of o, in the z = :Az RP of H I G H ~ P  at (a) t = 14.6, ( b )  t = 19.3, (c) 
t = 23.5 x (d )  t = 27.3 % 7s1, ( e )  t = 29.8 and (f) t = 35.0. The contour increments are (u, b , f )  
h0.6 and (c ,  d ,  e )  50.8 (1.65r:/(e)2 and 2.20r:/(60,)2 respectively). Regions of positive spanwise 
vorticity are shaded. In ( b )  the heavy dark lines are rib vortex lines; they are dashed when the 
vortex line is behind the RP. 

(figure 15d) that subsequently undergo secondary rollups (figure 15e). During the 
same time, the relatively simple prepairing spanwise vorticity pattern in the RP 
(figure 16a, b )  is transformed into an apparently turbulent vorticity distribution 
(figure 16f ) ,  with many small-scale granular regions of both signs of spanwise 
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FIGURE 17.  Vortex lines that pass through or near the symmetry points in the surviving (solid) 
and engulfed (dotted) ribs for HIGH~P a t  t = 19.3; (a) top view and ( b )  side view. 

vorticity. The flow rapidly becomes too complex to allow a detailed description of the 
development of all its features, but the analysis presented below does yield some 
insight into the processes underlying this transition. 

As in RM, the two symmetries (10) and (ll), which are both present in HIGH~P, 
simplify the analysis of the flow. Because of the point symmetry (1 l ) ,  the rib vortices 
are constrained to be centred at the symmetry points and the vortex lines associated 
with the ribs can be unambiguously defined. In HIGH~P there are symmetry points 
in both the surviving and engulfed braid regions, so both sets of rib vortex lines can 
be tracked. The plane symmetry (10) requires that w, w,, and wy be zero in the 
between-ribs plane (BP). Therefore, the equation governing the spanwise vorticity in 
the BP is particularly simple: 

This is the two-dimensional vorticity equation except for the single stretching term 
(u, a w p z )  and the spanwise diffusion term (l/Re) a2uz/az2).  

5.2.1. Evolution of rib vortex lines 
In RM it was shown that the rib vortex lines leave the RP and are twisted around 

each other near a horseshoe tip that connects one rib vortex with its neighbour. This 
distortion gives rise to the positive spanwise vorticity regions in the rib plane as in 
figure 16(a). Such distortion of rib vortex lines was seen to be the major source of 
positive spanwise vorticity in the absence of pairings (RM). Rib vortex lines at 
t = 19.3 are shown in figure 17. The vortex lines for both the surviving ribs and 
the engulfed ribs are highly distorted, with large excursions out of the rib plane. Note 
that at several points, the vortex lines through neighbouring engulfed ribs are 
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FIGURE 18. Vortex lines that pass through or near the symmetry points in the surviving (solid) and 
engulfed (dotted) ribs for HIGH~P a t  t = 23.5 x T ~ ~ :  (a )  top view and (a) side view. Only one set 
(right side) of surviving ribs are included in (a). 

coming very close together. This proximity allows viscosity to reconnect the vortex 
lines, yielding a different topology at  a later time. This has already begun to occur, 
as is evidenced by the small regions of positive spanwise vorticity in the BP at this 
time (figure 15b). Initially, the spanwise vorticity is all negative in this plane. 
According to (15), the only way positive spanwise vorticity can arise in the BP is by 
viscous diffusion in the spanwise direction. A t  several locations this diffusion results 
in viscous reconnection of the vortex lines. The positive regions of spanwise vorticity 
in figure 15 ( b )  are located where the engulfed rib vortex lines in figure 17 are pinched 
together. It is interesting to note that in this very complicated flow, the topology of 
the vortex lines associated with the major structures is still largely that of the initial 
vortex sheet, i.e. there has been almost no vortex reconnection to form closed vortex 
loops or vortex lines running counter to the mean vorticity across the entire spanwise 
domain. 

Where the rib vortex lines cross the rib plane, there must be a region of non-zero 
spanwise vorticity. The correspondence of features in the spanwise vorticity contours 
with rib vortex line crossings is shown in figure 16 (b) .  Note that almost all the regions 
of non-zero spanwise vorticity are associated with the crossing of rib vortex lines. 
The major exceptions are the four long thin regions of particularly strong vorticity 
associated with the cup structures. There are also two small positive regions near the 
centre of the roller that are associated with the ' sub-rib ' structures discussed in RN. 
The spanwise vorticity pattern in the between plane can also be understood in terms 
of the cups and wisps associated with the rib and sub-rib vortex lines (see RM). Thus, 
the features of the mixing layer at  this time are manifestations of the structures 
present in the non-paired layer. 
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FIGURE 19. Vortex lines that pass through or near the symmetry points in the surviving (solid) 
and engulfed (dotted) ribs for HIGH~P at (a) t = 27.3 w T , ~  and ( b )  t = 31.1. 

The correspondence of vorticity structures to the prepairing ribs and cups does not 
persist for long. By t = 23.5 z rpl the vorticity in the roller can no longer be 
described in terms of these original structures. Vortex lines through (and near) the 
engulfed-rib symmetry point in the middle of the paired roller (figure 18) no longer 
have the large excursions shown in figure 17, indicating that the topology of the 
vorticity has changed as a result of viscous reconnection. Thus, a t  this time, the 
vortex lines passing through the engulfed-rib symmetry point can no longer be 
identified as an engulfed rib. The cup structures are also not identifiable at this time, 
so the only persisting major features of the prepairing mixing layer are the surviving 
ribs. Vortex lines representing the surviving ribs a t  t = 23.5 x rpl, t = 27.3 % rsl and 
t = 31.1 are shown in figures 18 and 19. At rpl, the main rib vortex lines are wrapped 
into the pairing roller, although they extend far above and below the roller before 
doing so. At the point of greatest excursion (in y), lines from neighbouring ribs are 
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FIGURE 20. (a)  Enlargement of the w, contours in the boxed region of figure 15(e). ( b )  w, contours 
in the (z,y)-plane passing through the centre of the right roller in (a) .  The contour increment is 
f0.8. Regions of positive w, are shaded. The domain is 7 < z < 11, - 3 < y < - 1 and 0 < z < A,. 

being pinched together, allowing viscosity to reconnect them. This has been largely 
completed by T , ~  (figure 19a). At this time the rib vortex lines again connect to the 
neighbouring ribs far from the rollers, this time through the wisp of spanwise 
vorticity shown in figure 15(d) .  

It is this wisp of spanwise vorticity that crosses the M P  at T ~ ~ ,  leading to the 
circulation jump at that time. Thus, as in RM, the circulation jump at 7,1 occurs 
because the rib vortices are pulled over (or under) the roller into the neighbouring 
braid region. When the vortex lines are pulled all the way through the M P  (at about 
t = 30; figure 19b is just after this), the circulation should have tripled, since then 
vortex lines from three sets of ribs cross the MP (the original rib and the ribs from 
braid regions up- and downstream). The actual maximum circulation jump (from 
2.05 before T , ~  to 6.33 a t  t = 30, see figure 11 b )  is slightly more than a factor of three. 

At t = 30, the mid-braid circulation of H I G H ~ P  (figure 11 b )  reaches a maximum 
and begins a rapid decline. This is also caused by spanwise vorticity entering the 
braid region, but in this case the vortex lines associated with it are kinked in a sense 
opposite to that of the rib lines. The spanwise vorticity structure that causes the 
circulation decline is apparent in figure 15(e) (the long thin sheet of spanwise 
vorticity in the lower left portion of the domain). It is not surprising that these 
vortex lines are kinked in the opposite sense to the ribs since most of the prepairing 
core vortex lines are kinked in this way. 

5.2.2. Formation and evolution of vortex sheets 
The thin sheets of spanwise vorticity that form in the BP become very long and 

wide compared to their thickness. For example, the boxed region in figure 15(e) has 
been magnified in figure 20 (a),  along with a z, y cross-section through the right roller 
in that region. Since this is essentially a two-dimensional vortex sheet, it is no 
surprise that it is undergoing a Kelvin-Helmholtz rollup, as noted in Moser & Rogers 
(1991). The velocity profile averaged in x over the extent of the box in figure 20(a) 
is shown in figure 21. The average velocity jump across this mini-mixing layer is 
approximately 0.8 and the vorticity thickness is approximately 0.27. (The 
unaveraged velocity jump across the internal shear layer is as high as 1.3 at the right 
rollup in figure 20a.) The most unstable wavelength of such a shear layer is about 2.0, 
which is in good agreement with the spacing between the forming rollers in figure 
20(a). This secondary rollup of the internal shear layer continues until, by t = 35, 
individual rollers have developed (the two rollers in the bottom of the domain of 
figure 15f).  A t  this time there are also other internal shear layers that are beginning 
to roll up (see figure 15f ) .  The formation of thin internal shear layers in the BP and 
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FIGURE 21. Streamwise velocity profile as a function of y in the BP, averaged over the 

%-domain defined by the box in figures 15(e) and 20(a). 

their subsequent rollup increases the complexity of the flow and contributes to the 
cascade to small scales and the development of turbulence. 

According to (15), the only way that spanwise vorticity can be amplified in t h e  R P  
is by stretching in the z-direction. This must therefore be responsible for the 
formation of the thin sheets of spanwise vorticity discussed above. In  the  case of the 
thin sheet that is shown rolling up in the box in figure 15 ( e ) ,  this strain is primarily 
due to the surviving rib vortices. At t = 27.3 % rsl, when the vortex sheet is forming 
(see figure 15d), the surviving rib vortices and some core streamwise vorticity form 
a stagnation point in the BP near the position of the forming vortex sheet (see figure 
22). Note that the large regions of streamwise vorticity at  the bottom of the domain 
in figure 22 ( b )  are the surviving rib vortices. This quadrupole produces a persistent 
coherent strain that produces the thin sheet of spanwise vorticity in the same way 
that the cups were formed (see RM 84.3.1). Other thin sheets that form in the roller 
core are similarly produced by coherent strain in the BP, but the complexity of the 
core precludes associating these coherent strain regions with known structures. In  
the more complex HIGHSP flow described in $6, the formation of thin sheets and their 
secondary rollup is a prominent feature of the BP spanwise vorticity. 

6. Multiple pairings 
It was observed in $5.2 that if a mixing layer is sufficiently three-dimensional, a 

transition to turbulence can be initiated by a pairing. To allow such a transition to 
be completed, flows with two pairings have been simulated. In  addition, we wish to  
determine if, for flows with weaker three-dimensionality, a transition might be 
triggered by the second pairing. This might be expected since the level of three- 
dimensionality increases after the first pairing (see 84.1). Three cases with different 
initial levels of three-dimensionality were simulated ( L O W ~ P ,  M I D ~ P  and HIGH~P). 
L O W ~ P  has an initial circulation comparable to that of LowlP, HIGH2P has an initial 
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FIGURE 22. The HIGH~P flow in the (2, y)-plane passing through the vertical line in figure 15(d). (a)  
o, contours, (b )  w, contours and (c) velocity vectors. The contour increment is k0.6, and in (a)  
regions of positive spanwise vorticity are shaded. The y-domain depicted is from - 4 to - 1. 

circulation comparable to HIGH~P and M I D ~ P  is intermediate between these two (see 
table 2). For historical reasons, initial disturbances for these cases have different 
functional forms than those of the flows discussed in the previous sections. This was 
shown in Rogers & Moser (1991) to cause no qualitative, and only slight quantitative, 
differences in the flow evolution. 

6.1. Weakly three-dimensional double pairings 
Since the LOWBP flow has initial three-dimensionality similar to that of LowlP, it is 
expected to agree equally well with linear analysis (see 55.1) through the first pairing. 
This is indeed the case as can be seen in figures 23 (a) and 23 ( b ) ,  where the normalized 
three-dimensional amplitude A& and the normalized circulation Tz are plotted. 
Note, however, that by the time of the second pairing, LOWZP shows significant 
deviations from the linear evolution, despite its initially weak three-dimensionality. 
In LOW~P,  the rib collapse criterion is not satisfied until t 25 (figure 23c), well after 
the first pairing, despite the fact that collapse of the ribs is one of the first nonlinear 
processes to occur (see RM). The M I D ~ P  flow exhibits slightly greater departures from 
the predictions of the linear analysis, but is still qualitatively similar to LowlP. The 
relatively weak three-dimensionality of these two flows is in strong contrast to the 
large departures from the linear analysis observed in the HIGH~P flow. 

When compared to the structure of the linear perturbations, the structure of the 
vorticity field in LOWBP shows differences similar to those observed in LowlP (e.g. 
figure 12). In particular, the vertical extent of the rib streamwise vorticity in the 
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FIGURE 23. Time development of (a )  A,$, ( b )  rz, ( c )  Lin & Corcos (1984) collapse parameter, 9, 
and (d )  momentum thickness, 8,. The two-dimensional base flow for the linear results is 2D2PoG. 
Note 9 = 0 for linear analysis and the curve labelled linear in (d) is for the base flow. 

braid region is greater as a result of the collapse of the ribs and the thin filaments of 
away from the roller core are absent (resulting in reduced levels of W,,, when 

compared to the linear results). These effects are even more pronounced in the M I D ~ P  
flow.? Notably absent from ~ o w 2 P  are the isolated thin shear layers that formed in 
HICHIP and led to secondary Kelvin-Helmholtz rollups. 

The initial three-dimensionality of M I D ~ P  is approximately 2.5 times weaker than 
HICHIP or HIQH~P. As a consequence, transition is not initiated at the first pairing 
of M I D ~ P .  However, the three-dimensionality of MID~P increases by a factor of two 
or more between the first and second pairings, as measured by A,, and r, (figure 23). 
Thus transition could conceivably be initiated at  the second pairing. Contours 
of spanwise vorticity in both the BP and the R P  of MIDBP at t = 39.1 % rpz and 
t = 54.7 z rs2 are shown in figure 24. While some of the features in these figures 
show some similarity to those of the HIGH~P flow shown in figures 15 and 16 (e.g. 
the formation of some thin filaments of spanwise vorticity in the BP), MID~P 
is clearly not undergoing a transition to small-scale turbulence at  this time. There 
is no indication of secondary rollups forming on the thin sheets of spanwise 
vorticity and the spanwise vorticity in the R P  remains fairly well organized, 
with relatively few positive regions. 

There are several possible reasons for the lack of transition in MID2P at the second 
pairing. First, the aspect ratio of the three-dimensional disturbances (ratio of 
spanwise scale to  streamwise scale of the flow) is a factor of two smaller at  the second 
pairing than a t  the first pairing because no spanwise scale change has been allowed. 
This imposed small aspect ratio could inhibit the transition (although it is shown in 
Moser & Rogers 1992 that the flow evolution changes very little in a spanwise domain 
four times as large unless strong (0,p) subharmonics are included in the initial 

t A direct comparison of the vorticity contours at T~~ for M~DZP, L O W ~ P ,  and the corresponding 
linear results can be found in figure 35 of Moser & Rogers (1992). 



Pairing of a three-dimensional plane mixing layer 305 

FIGURE 24. Contours of o, for MID2P in (a, c) the BP  and (b, d )  the RP a t  (a, 6 )  t = 39.1 sz T~~ and 
(c, d )  t = 54.7 x 7,2. The contour increment is kO.3. In  this and subsequent similar figures areas of 
positive spanwise vorticity are shaded and negative contours are dotted. 
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FIGURE 25. Time development of A,,/& as a function of t/Tp, for HIGH~P (-) and MID2P 
(----), where T~ is T~~ for HIGH~P and T~~ for M I D ~ P .  

condition). Second, the three-dimensional amplitude A,,, is not a particularly good 
basis for comparison when the thicknesses of the mixing layers being compared are 
substantially different (e.g. HIGH~P at T~~ versus M I D ~ P  at T ~ ~ ) .  This is because there 
is an implied lengthscale in the definition of A, ,  (see 92.2). A better measure in this 
case is A3,,/dm, which is plotted in figure 25 for MIDZP and HIGH~P (the momentum 
thickness for HIGH~P and MID2P is plotted in figures 13c and 23d respectively). By 
this measure, the three-dimensionality of M I D ~ P  at 7p2 is a factor of 1.8 weaker than 
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FIGURE 26. Top view of vortex lines that pass through or near the symmetry points in the surviving 
ribs for MID2P a t  (a )  t = 59.7 and ( b )  t = 65.0. The domain has been periodically extended in the 
spanwise direction to show two pairs of ribs. 

FIGURE 27. Contours of w, in the BP of MID2P at (a) t = 65.0 and (b) t = 76.1. Vortex lines shown 
in figure 26(b)  pass through the region of intense positive vorticity in (a). The contour increment 
is 20 .3  and the peak level of‘ positive w, is 2.80 in (a)  and 4.53 in (b) .  

that of HIGHlP at  7pl. Finally, there may be some subtle difference between MID2P 

and HIGH~P due to the fact that M I D ~ P  has undergone a previous pairing. For 
example, in M I D ~ P  the roller cores have already paired once and therefore do not 
have the simple cup structures of unpaired rollers. 

The M I D ~ P  flow is sufficiently three-dimensional for the rib vortex lines to be 
pulled all the way over the double-paired roller. This is illustrated in figure 26. As in 
HIGH~P,  the rib vortex lines become distorted and are brought together with those 
of neighbouring ribs, allowing them to viscously reconnect. This has started to occur 
in figure 26(a) (t = 59.7). Note that the reconnection does not pinch off the heads of 
the hairpin vortices as was the case in HIGH~P. Instead, each rib reconnects with its 
other neighbour (figure 26b), which makes the heads of the resulting hairpins have 
spanwise vorticity of opposite sign (positive). The sense (or direction in z )  of the rib 
vortex lines has thus been reversed. This reconnection results in a region of strong 
positive spanwise vorticity in the BP (figure 27). This positive vorticity is sheet-like 
at  t = 65.0, but by t = 76.1 it is concentrated in a very compact ‘roller’. The rib 
vortex line reconnection depicted in figure 26 is neither the first nor the last to occur 
in MID~P.  A t  t M 35 (before the reconnection shown in figure 26), the rib vortex lines 
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reconnect as in H I G H ~ P ,  preserving the sense of the rib vortex lines. After the 
reconnection shown in figure 26, further reconnections occur, some of which change 
the sense in the tip region connecting the ribs and some of which preserve it. 

6.2. Highly three-dimensional double pairing 
As with HIGH~P,  transition to small-scale turbulence is initiated a t  the first pairing 
( T ~ ~ )  in HICH~P. This can be observed in figures 28 and 29, where spanwise vorticity 
in the BP and RP of HIGHBP at four times (two of which are within the period 
illustrated in figures 15 and 16) are shown. Clearly, the same interaction of the cups 
in the pairing rollers is occurring, leading to the formation of thin shear layers, 
secondary rollups in the BP, and small-scale granularity in the RP (see 55.2). As the 
second pairing proceeds, the complex transitioning rollers are brought together. The 
structures in each roller can then interact, increasing the complexity of the double- 
paired roller. By t = 39.1 x rpz (figures 28c and 29c), the prepairing structure is no 
longer discernible. Thin sheets and secondary rollups in the BP and small-scale 
granularity in the RP, which characterize the flow at the first pairing, are also 
present a t  the second pairing. Later ( t  = 52.1, see figures 28d and 29d), secondary 
rollups continue and there is enhanced turbulence activity in the braid region, 
especially in the RP, while the turbulence in the core appears to be decaying. 

The onset of turbulence is accompanied by the continuous entry of spanwise 
vorticity into the braid region (see figures 28 and 29), even before the second pairing. 
Thus, the process described in $3 by which pairing leads to re-entry of spanwise 
vorticity into the braid region is no longer relevant. There is no rS2 in this case (see 
table 2). Also, since the braid region is turbulent, the circulation r, can no longer be 
interpreted as the rib circulation. 

As would be expected for a turbulent flow, many features o f  HIGHBP are 
qualitatively different from those of non-transitional flows. For example, a 
comparison of the spanwise vorticity of H I G H ~ P  and M I D ~ P  at t = 39.1 % rp2 (see 
figures 24,223, and 29) reveals no similarity; HIGHZP is clearly turbulent while M I D ~ P  
is not. The structures of the passive scalar fields present in these flows are also 
qualitatively different (figure 30). Scalar interfaces in HIGHSP are highly distorted 
with many small-scale features, while those in M I D ~ P  are smooth and regular. This 
suggests that  a flow visualization of HIGHBP based on passive markers would appear 
turbulent. There has also been more molecular mixing of the scalar in the HIGHBP 
flow than in M I D ~ P  (see 57). Finally, the presence of turbulence produces a steadier 
growth of  the mixing layer than in the non-transitional flows (see figure 23d). The 
oscillations in the thickness of the layer (caused by the pairings) have been largely 
eliminated, consistent with the monotonic growth expected of a fully turbulent layer. 
The characteristics o f  post-transitional turbulent mixing layers will be examined 
further in 97. 

The flows discussed here and in 5 5 were precluded from undergoing a spanwise scale 
change because the largest possible spanwise wavelength corresponded to p = 1 .  The 
extent to which these simulations are affected by this constraint is therefore of great 
interest. Our main concern is how robust the results of 5$5 and 6 are. That is, whether 
low-amplitude spanwise subharmonic modes produce any large changes in the flow 
evolution. To test this, two simulations (WMID~P and WHIGH2P, see table 2) with 
weak spanwise subharmonics were examined. Without the spanwise subharmonics, 
the W M I D ~ P  and WHIGH~P flows would be identical to the M T D ~ P  and H I G H ~ P  flows, 
respectively. A comparison of W M I D ~ Y  with M I D ~ P  and of WHIGH~P with HIGH~P 
thus allows one to determine the extent to which the constraints on spanwise scales 
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FIGURE 28. Contours of w, in the BP of HIGH~P a t  (a)  t = 19.1 F Z T ~ ~ ,  ( b )  t = 31.9 z T ~ ~ ,  

(c) t = 39.1 x 7p2 and (d )  t = 52.1. The contour increments are (a)  f0.6, ( b )  f0.8, ( c )  f0.5, and 
(d )  k0.3. 

in M I D ~ P  and HIGHBP are modifying the flow. Results of such a comparison indicate 
that the lack of spanwise subharmonics results in very little difference in the flow 
evolution (Moser & Rogers 1992). The amplitudes A,, and A,, agree well throughout 
the flow development, with A, ,  differing by a t  most 6% even up to t = 60. 
Comparisons of flow field contour plots lead to the same conclusion. These results 
indicate that a spanwise scale change triggered by weak spanwise subharmonics is 
slow (Rogers & Moser 1993). Thus, strong spanwise subharmonics are needed for flow 
evolution to vary significantly from that discussed above. 

7. Character of the post-transition flow 
Several of the flows discussed in the preceding sections undergo EL transition to 

turbulence. However, most of these were constrained in some artificial way. For 
example H I G H ~ P  was constrained by the exclusion of spanwise subharmonics and the 
imposition of symmetries in the initial condition. While these constraints aided in the 
analysis of the transition process, they produce an unnatural turbulence. One case 
(TURB~P)  was designed to  eliminate all symmetries and most constraints. The 
disorder in the resulting flow is similar to that in experimental mixing layers. For 
example, passive scalar contours in the MP are similar to  the flow visualization 
pictures of Bernal & Roshko (1986). In this section, the character of this turbulence 
is documented to provide a basis for comparisons with experimental measurements 
and future simulations begun from turbulent initial conditions. The flow a t  t = 39.8 
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FIGURE 29. Contours of w, in the RP of HIQH~P a t  (a)  t = 19.1 o T , , ~ ,  ( b )  t = 31.9 x T , ~ ,  

(c) t = 39.1 x T~~ and (d )  t = 52.1. The contour increments are ( a )  kO.6, (b )  k0.8, (c) 20 .5 ,  and 
( d )  k0.3. 

FIGURE 30. Contours of the passive scalar in the BP of ( a )  MIDZP and ( b )  HIGHZP at 
t = 39.1 x T ~ ~ .  The contour increment is 0.08, from 0.02 (bottom) to  0.98 (top). 

is chosen for this purpose because it contains ‘ healthy turbulence ’ and yet is before 
the second pairing at  rpz = 47.1 and is therefore far from being oversaturated. It is 
thus not affected by the absence of a further pairing. 

The TURB2P flow undergoes a transition similar to that described in $6.2 for the 
HIGH2P flow. However, there is a subtle difference. Because of the strong 
subharmonic streamwise-invariant disturbances and their relative phasings, the ribs 
do not remain at  fixed locations in the braid region. Consequently, well-defined ‘rib 
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FIGURE 31. (:ontours of o, in the z = 0 (5, y)-plane at t = 39.8 in TURB~P. The contour 
increment is f0.5. 

planes’ and ‘ between-ribs planes’ do not exist. The distinction between higher-order 
rollups of thin vortex sheets in the BP’s and the granular patterns in the RP’s is thus 
absent. The flow appears to contain a combination of both these features at  all 
spanwise locations (see figure 31). 

While contour plots of o, in the HIGH~P (figures 28 and 29) and TURBZP (figure 31) 
flows are qualitatively similar (with the above noted exception regarding the R P  and 
BP features), the x, z (horizontal) planes appear significantly more ‘turbulent ’ in 
TURB~P.  Much of the increased complexity is due to the elimination of the 
symmetries (10) and (11).  Vorticity contours in the centreline (z,z)-plane of the 
TURB2P flow are shown in figure 32 a t  times before and after the transition. The loss 
of regularity is obvious. (Note that there is still some evidence of engulfed ribs a t  
x = $15~ in figure 32d. )  

The y-dependence of several horizontally averaged statistics is shown in figure 33. 
Both the mean velocity and mean scalar profiles are roughly symmetric around the 
layer centreline. The mean velocity (u) is almost an error function (an error function 
of the same thickness is plotted in figure 33a for reference). The mean scalar (T’) 
profile is more nearly piecewise-linear. This suggests that a constant-eddy-viscosity 
model might be adequate for the transport of momentum, but not of the scalar. At 
this time ( t  = 39.8) both mean gradients are negligible beyond IyI z 8. 

The r.m.s. velocity fluctuations (u‘, v‘, and w‘) and the Reynolds stress ( --m) are 
shown in figure 3 3 ( b ) .  At t z 10 (not shown), all r.m.s. velocities have a well-defined 
single peak a t  the centreline. By t = 39.8, however, they are approximately constant 
over the central portion of the mixing layer (about -4 < y < 4). The r.m.s. velocity 
fluctuations all decay slowly in y. This is due to the slowly decaying potential 
velocity fluctuations. Two-dimensional fluctuations dominate the potential velocity 
far from the vortical part of the layer, resulting in a lower level of ui’ compared to 
u‘ and v’ for large y. The potential velocity fluctuations do not contribute to the 
Reynolds stress (--m), thus the Reynolds stress decays rapidly in y.t Like the 2.111.5. 
velocities, the r.m.8. vorticities (denoted by w; and shown in figure 3 3 4  are roughly 
constant over the region -4 < y < 4 (profiles are even flatter at later times) after 
exhibiting single peaks at  the centreline early in the layer development. 

t The scalar fluctuations, the vorticity fluctuations, and the scalar fluxes also do not exhibit 
slowly decaying potential tails. All these quantities are essentially zero where the mean gradient 
is zero. 
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FIGURE 32. Contours of (a,  b )  o, and ( e ,  d )  o, in the centreline ( 2 ,  %)-plane of the TURB2P flow at 
(a ,  c) t = 11.7 and (b ,  d )  t = 39.8. The contour increment is k0.5 except in (d ) ,  where it is -t 1.0. 
Shaded regions indicate regions of positive w, (opposite in sign to the mean vorticity). 

At t = 39.8, the Reynolds stress correlation coefficient -m/(u’v’) is just over 0.6 
in the central portion of the layer. T,ater in time (t = FiO), -m changes sign over at  
least part of the layer (the middle at  this time). This is associated with the completion 
of the second pairing (7p2 = 47.1). The reversal in sign of  the Reynolds stress implies 
a counter-gradient momentum flux and is accompanied by a reduction in the 
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FIGURE 33. Profiles in y of various 2, z averaged statistics for TURBZP at t = 39.8. 

momentum thickness. It has been observed in other temporally developing (e.g. 
Riley & Metcalfe 1980; Metcalfe et al. 1987) as well as forced spatially developing 
(Oster & Wygnanski 1982; Lowery & Reynolds 1986; Lele 1989) mixing layers and 
is particularly prevalent in two-dimensional flows. Riley & Metcalfe and Metcalfe 
et al. attributed this change in sign to oversaturation. While it is true that the first 
pairing (unless substantially delayed) will prevent this change in sign of the Reynolds 
stress after the rollup, further pairings do not, in general, happen fast enough to 
eliminate a period of counter-gradient momentum flux after each pairing. Strong 
three-dimensionality can change this, however, and both the T U R B ~ P  and WHIGH~P 
flows do not exhibit such a change in sign after thejrst  pairing (as the W M T D ~ P  flow 
does). It is unclear whether the change in sign observed in all three of these flows 
after the second pairing could be prevented by a third pairing. 

The r.m.s. scalar fluctuation profile (note 8 is used here for T -  Tand 0’ is its r.m.s. 
value) is double-peaked (figure 33c), a feature that becomes more pronounced after 
the first pairing. Because of the mean shear, the turbulent scalar flux vector has both 
streamwise and vertical components (a and a), even though there is no streamwise 
mean scalar gradient. The correlation coefficients ue/(u’O’) and a/(d0’) at t = 38.9 
are roughly 0.4 and -0.5, respectively. 

The profiles of C, the x, x averaged dissipation rate of turbulent kinetic energy, at  
t = 39.8 in TURB~P and at t = 40.1 in W M I D ~ P  are shown in figure %(a) .  The time 
evolution of the y-integral of these profiles (et) is shown in figure 34(b) for the same 
two flows. The presence of many small-scale structures in the T U R B ~ P  flow (e.g. 
figures 32b and 3 2 d )  results in a significantly higher rate of kinetic energy 
dissipation. As a result, the integrated turbulent kinetic energy is smaller in TURB2P 
than in WMID2P after 7pl. Note that in W M I D ~ P  the ‘production’ of turbulent kinetic 
energy actually becomes negative for a period after each pairing. Thus while the 
kinetic energy is roughly constant in T U R B ~ P  after t = 7pl, it  increases and oscillates 
in WMIDBP, remaining above the TURBBP level for t > 7pl. 
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FIGURE 35. One-dimensional spectra of q2 (--) and 2e (----) in the (a)  streamwise and ( b )  
spanwise directions a t  the centreline of the layer for t = 39.8 for TURBZP. 

The quantities shown above can be used to form a turbulent timescale F / c =  
(u" + w" + w ' ~ ) / E  This timescale is roughly constant in the core of the layer and is 
about 50 at t = 39.8. The turbulence Reynolds number, Re, = q " / ( ~ v ) ,  is about 3000 
in the middle of the layer a t  this time. 

One-dimensional spectra of q2 and 2e a t  y = 0 in TURBZP at  t = 39.8 are shown in 
figure 35. These spectra indicate that the flow is well resolved since there is at  least 
a two decade falloff in the dissipation spectra. Also, the fact that  this is a low- 
Reynolds-number turbulent flow is evident in the lack of a discernible inertial range. 
Finally, it  is clear that the streamwise domain size constrains the flow evolution, 
since the streamwise q2 spectrum does not plateau a t  low wavenumbers. This is 
expected since t = 39.8 i8 well into the second and final pairing in this flow. 

Tn addition to an increased rate of kinetic energy dissipation, the small-scale 
turbulence provides more thorough 'mixing ', A zero-heat-release fast chemical 
reaction can be studied using the passive scalar carried in the simulations (Burke & 
Schumann 1928; Zeldovich 1951 ; Toor 1962). The ratio of the amount of reaction 
product to the reaction product that would be present if there were no scalar 
fluctuations is a measure of the degree of scalar mixing (Konrad 1976). This ratio is 
denoted by A' and is given by 

- 

where P(T) = 1 - 122'- 11 is the product concentration, an overline indicates the 
11 F 131 247 
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average over x and z ,  and the second term in each integrand eliminates the 
contribution of the initial scalar profile. Because A' is a ratio, it provides a fair 
comparison of mixing in layers of different thickness. In  figure 36 (a )  the evolution of 
this ratio for TURB2P, WHIGH~P, and WMID2P is shown (two of these curves have 
been shown in Moser & Rogers 1991). Note that the ratio is initially 1 .O since there 
are no  scalar fluctuations at t = 0. The late-time plateau level of the transitional 
TURB2P flow is 0.18 greater than that of the non-transitional WMTD2P flow. This 
difference is close to the value of 0.15 measured by Konrad (1976) in his experiments 
at similar. Schmidt number (0.7 compared to  our 1.0). 

The probability density function (p.d.f.) of w, is qualitatively different in the 
transitional and the non-transitional flows. As can be seen in figure 36(h),  WMID~P, 
WHIGH~P, and T U R B ~ P  all exhibit roughly exponential decay of P(w,) as Jw,( becomes 
large. There are, however, two distinct differences between the transitional and non- 
transitional flows. In the non-transitional case (wMID~P), there is little positive w, 
(opposite in sign to the mean vorticity) and there are significant amounts of 
irrotational fluid (or a t  least fluid with w, z 0) near the centreline of the layer. In  
contrast, the p.d.f. of w, in the TURB~P flow is more symmetric and has a much 
smaller peak at w, = 0. The p.d.f. for the WHIGH~P flow is intermediate in both these 
respects. These results suggest a possible transition criterion based on the level of 
positive o, present in the flow. Such a criterion was proposed by Moser & Rogers 
(1991). 
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8. Summary and discussion 
The simulations described in the previous sections provide a detailed description 

of three-dimensional mixing layers undergoing pairings of the primary Kelvin- 
Helmholtz rollers and, in some cases, transition to turbulence. The early time 
evolution through the first Kelvin-Helmholtz rollup was described in RM 
(summarized here in the Appendix). I n  this section, the effects of pairing on three- 
dimensional mixing layers are summarized and the results are compared with 
conclusions reached in earlier studies. 

8.1. Two-dimensional mixing layers and three-dimensional small disturbances 
Several important features of three-dimensional mixing-layer evolution are governed 
by the development of the two-dimensional Kelvin-Helmholtz rollers and can 
therefore be understood in the context of a two-dimensional flow with a three- 
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dimensional small disturbance. The process of pairing pulls the rollers away from the 
surviving braid region. If initiated soon enough this prevents oversaturation 
(described in RM) and the associated re-entry of spanwise vorticity into the 
surviving braid region. Pairing therefore prevents (or delays) the rapid, apparently 
exponential, growth of three-dimensionality associated with oversaturation. As the 
pairing is completed, spiral arms of vorticity are ejected from the paired roller, and 
re-enter the surviving braid region. This re-entry of vorticity results in a period of 
rapid growth of three-dimensionality, which is arrested as the spanwise vorticity is 
again drawn out of the braid region. Unlike oversaturation, the re-entry of spanwise 
vorticity associated with the spiral arms cannot be suppressed by further pairings. 
Thus after each pairing there is a period of disturbance growth resulting in an 
increase in three-dimensionality by an approximately constant factor for each 
pairing (see $4.1). Once pairings have ceased, the final paired roller eventually 
oversaturates as described in RM, with a resulting exponential growth of three- 
dimensionality. 

The prevention of oversaturation by pairing is the reason that pairing has been 
observed to inhibit the growth of three-dimensionality (Metcalfe et al. 1987 ; Huang 
& Ho 1990). Oversaturation results in spanwise vorticity entering the braid region 
and remaining there. Three-dimensional perturbations then grow continuously. In 
contrast, continued pairings result in discrete periods of disturbance growth as 
described above. The time between pairings, and therefore the time between these 
periods of growth, approximately doubles with each pairing. This results in algebraic 
long-term growth of three-dimensionality rather than the exponential growth that 
occurs during oversaturation. 

If pairing is not initiated fast enough, oversaturation and its associated exponential 
growth of three-dimensionality can occur prior to  the pairing. Because the growth of 
three-dimensionality during and after the pairing is similar for all pairings, delayed 
pairing results in more three-dimensionality. This is relevant to forced experimental 
mixing layers in which forcing can suppress pairing. 

The results of RM suggested that the translative instability responsible for the 
growth of three-dimensionality in an oversaturated mixing layer is not associated 
with an isolated portion of the flow (i.e. braid region or core), since it produces 
continuous growth of both rib circulation and roller kinking. The growth of three- 
dimensionality in a pairing mixing layer prior to oversaturation is also not localized 
to a particular region of the flow. As the spiral arms introduce spanwise vorticity into 
the braid region, growth occurs there preferentially. Later the roller becomes more 
three-dimensional until a rough equilibrium is reached. At this time, disturbance 
growth stops until the next spiral arms initiate another period of growth. Clearly, the 
instability should be considered to be one of the flow as a whole. 

It is apparently impossible for a two-dimensional mixing layer to undergo a 
sequence of self-similar pairings (i.e. pairings in which the  paired roller is similar. to 
the original unpaired rollers). A t  sufficiently high Reynolds numbers, or after 
sufficiently many pairings, vorticity does not diffuse fast enough to maintain a self- 
similar configuration. Thus with each pairing the region of vorticity concentration in 
the roller gets smaller relative to the distance between rollers. 

8.2. Highly three-dimensional flows 

Pairing in a weakly three-dimensional mixing layer is well described by the linear 
evolution of a three-dimensional perturbation as discussed above. However, pairing 
in more strongly three-dimensional layers results in significant nonlinearities and, in 
some cases, the beginnings of the transition to  turbulence. In $ 5  the details of the 

11.2 
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initial portion of such a transition are described. In  this case transition is triggered 
by a pairing in a flow that is significantly three-dimensional (i.e. contains strong 
‘cups’ and collapsed ‘ribs’), although still organized into a few large-scale structures. 
By the time the pairing is complete, the layer has become disorganized and the 
origins of many vortical structures can no longer be traced back to their organized 
prepairing counterparts. After the pairing, vortex stretching increases the com- 
plexity of the flow. Remnants of the original rib vortices together with newly created 
vortices generate thin vortex sheets ; these sheets are unstable and undergo higher- 
order rollups, further increasing the complexity of the flow by generating small 
scales. When this transitioning flow undergoes a further pairing, an apparently fully 
turbulent mixing layer results, which bears a strong resemblance to experimental 
turbulent mixing layers and shows many characteristics of turbulent flows in general 
(see $7) .  

The pairing-induced transition described in $ 5 has many Characteristics in 
common with experimentally observed transition. The experiments of Huang & Ho 
(1990) also indicated that the timing of the transition was related to the occurrence 
of pairings and that the flow was fully turbulent by the completion of the second 
pairing. The small scales in their flow were found to  first appear predominantly in the 
roller core at spanwise locations where ribs were located, consistent with the results 
presented here. Finally, the level of the mixedness parameter 4 (defined in (16)) in 
the transitional flows is about 0.18 higher than the corresponding level in flows that 
do not undergo transition. This increase is similar to the increase in rnixedness 
observed experimentally (Konrad 1976). 

Other possible transition mechanisms (besides the pairing-induced one considered 
above) also exist. In  particular, a few simulations described in RM and Rogers & 
Moser (1993) that  do not undergo any pairings appear to be transitional. Tn such 
flows transition results from either extremely large initial three-dimensional 
disturbances or from a long development in the oversaturated state. In the HIROLL 

flow of RM, the initial three-dimensional disturbance strength was four times that of 
the baseline ROLLUP case in RM and the HIGH~P simulation here. This initial level of 
three-dimensionality is so high that significant nonlinear behaviour results before the 
rollup is complete. By the time the flow reaches oversaturation i t  is apparently 
turbulent (RM, figure 25), with thin vortex sheets undergoing higher-order rollups in 
the between-ribs plane and small-scale granular vorticity structures in the rib plane. 
Transition, perhaps of a different character, can also result from long flow 
development after oversaturation. The PH&OP flow discussed in Rogers & Moser 
(1993) does not undergo any pairings, is begun from three-dimensional disturbances 
of only moderate strength, and yet is also apparently turbulent by t = 30.0. 

Finally, not all pairing mixing layers behave as those described in this paper. In  
particular, oblique subharmonic disturbances can lead to a variety of different 
features (e.g. ribs of alternating sign in the streamwise direction, hoops, and spanwise 
scale reduction, see Moser & Rogers 1992). Despite this, when these flows have well- 
defined collapsed rib vortices and undergo a pairing, a similar transition t o  
turbulence is initiated. 

Much of this work was begun in collaboration with visiting scientists a t  the 1988 
Center for Turbulence Research Summer School Program. In particular, we are 
grateful for discussions with Professors C.-M. Ho, F. Hussain, and J .  Riley. In  
addition, we have benefited from comparisons with the spatially developing mixing- 
layer work of Dr J. Buell, the compressible shear layer work of Professor 5. K. Lele, 
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and Professor E. Broadwell’s vast experience with experimental mixing layers. 
Helpful comments provided by Dr N. Mansour and Professor 8. K. Lele on a draft of 
this paper are also appreciated. Some of the computations were performed on the 
NAS supercomputers at  NASA Ames Research Center. 

Appendix 
The presentation of many of the results in this paper assumes familiarity with the 

evolution of three-dimensional Kelvin-Helmholtz rollups as presented in Rogers & 
Moser (1992) (RM). Here a summary of the results of RM is presented. This summary 
includes both a brief description of the vortical structures that develop as the layer 
rolls up and definitions of terms and quantities given in RM that will also be used 
here. 

Tn RM a ‘typical’ rollup evolution that resulted from the standard set of initial 
conditions used here (see fj2.2), as well as many other initial conditions, was 
identified. The typical Kelvin-Helmholtz rollup produces the well-known spanwise 
vortices (rollers) and the familiar array of predominately streamwise vortices (ribs) 
that extend from below one roller to above its downstream neighbour. The rib 
vortices alternate in sign in the spanwise direction and are roughly aligned with the 
extensional strain in the region between the rollers (the braid region). The ribs are 
formed from vortex lines that are kinked in the streamwise direction and become 
stretched by the extensional strain in the braid region. In the core of the rollers, 
vortex lines become kinked in the opposite direction, resulting in streamwise 
vorticity with sign opposite that in the rib at the same spanwise location. The 
combined strain produced by the ribs as they pass over the top (or under the bottom) 
of the roller and the oppositely signed roller streamwise vorticity alternately (in the 
spanwise direction) stretches and compresses the spanwise vorticity at the top and 
bottom of the roller. This results in cup-shaped regions (cups) of intense spanwise 
vorticity in the roller, these cups being located between the rib vortices and 
alternating from the top to the bottom of the roller in the span (see figure 14 of RM). 
The experiments of Nygaard & Glezer (1991) suggest that similar structures occur in 
experimental mixing layers. On the opposite side of the roller from each cup is a 
‘wisp’ of weaker spanwise vorticity (see figure 15 of RM). This wisp contains the 
vortex lines that loop from one rib to its neighbour. 

To a large extent, the strength of the cups and the degree of three-dimensionality 
in the mixing layer can be determined from the strength of the ribs. The best measure 
of the rib strength is the rib circulation, here denoted by r,. It is defined as 

rx = / ~ m ~ z u z d z d y  = -[ymvdyr2, z=o (A 1) 

where x = 0 is taken to  be one of the planes of symmetry defined in (lo), that is a 
between-ribs plane (BP). Throughout this paper the rib circulation is measured at X- 
locations corresponding to the mid-braid plane (MP).? A superscript 0 and * will be 
used to  denote, respectively, the circulation at  t = 0 and the circulation normalized 
by its value at t = 0. By manipulating the Navier -#tokes equations, the governing 
equation for r, can be obtained (for simplicity the inviscid case is considered here) : 

t r$ was used to denote the MY circulation in RM. 
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Equation (A 2) implies that there must be spanwise vorticity in the MP for r, to 
grow. Indeed in RM it was observed that the rib circulation stopped growing as the 
spanwise vorticity was drawn out of the braid region by the forming roller. T t  was 
then precluded from further growth until some event (oversaturation in RM) 
brought spanwise vorticity back into the MP. This is of great importance in the 
pairing of three-dimensional mixing layers (see $4). 

The rib circulation is also important in determining whether the ribs collapse into 
compact nearly axisymmetric vortices as described by Lin & Corcos (1984). I n  RM 
it was found that the Lin & Corcos criterion was an accurate predictor of rib collapse 
in the mixing layer. A collapse parameter 2’ was defined based on a curve fit to the 
curve in figure 9 of Lin & Corcos, resulting in the collapse criterion: 

where p = 0.6825 is the curve fit parameter and X is the maximum two-dimensional 
(i.e. average in x )  principal strain rate in the MY. Collapse of the ribs i s  a nonlinear 
phenomenon, and it was shown in RM to be one of the first three-dimensional 
nonlinearities to occur. It was also found that rib collapse was a prerequisite for the 
formation of strong cups as described above. Though cup formation is nonlinear, the 
mechanism leading to the strain that produces the cups is linear with respect to the 
two-dimensional evolving base flow (see $3.1 of RM). 

Finally, two further definitions from RM are given here. One is that of the 
momentum thickness (6,) defined by 

The other is that of the mid-braid vorticity ( - wb). For mixing layers with negative 
mean vorticity (like those considered here), w,, is the minimum (most negative) of the 
spanwise-averaged spanwise vorticity in the MP. The mid-braid vorticity is an 
indicator of the amount of spanwise vorticity in the braid region, which is a necessary 
ingredient for rib circulation growth as mentioned above. 
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